
Premier League Match & Table Predictor

Aim of the Project

Data Collection & Cleaning

Feature Engineering

Correlation analysis

Most Predictive Features (Good Correlation with Goals)

Less Important Features (Low or No Correlation)

Model Training (TensorFlow)

Input Preparation

Model architecture

Model Compilation & Training

Multiple Runs for Stability

Model Accuracy

Summary of Learning Behavior

Prediction Performance

Key Observations

Example Findings

Example Predictions

Aim of the Project

🔗 App link: Streamlit App

This project aims to:

1. Predict the number of goals scored by each team in a Premier League match.

2. Use the predicted scores to assign match points.

3. Aggregate all matches to generate the final Premier League table (20 teams ranked by points).

Data Collection & Cleaning

Data was scraped from fbref.com using pandas.read_html() :

Cleaned using:

1 game_data = pd.read_html(

2 'https://fbref.com/en/comps/9/schedule/Premier-League-Scores-and-Fixtures',

3 attrs={'id': 'sched_2024-2025_9_1'}

4)[0]

1 game_data.columns = game_data.columns.str.lower().str.replace(' ', '', regex=False)

2 game_data = game_data.dropna(how='all')

3 game_data['wk'] = game_data['wk'].astype(int)

4

5

6 game_data = game_data.rename(columns={

7 'xg': 'xg_home',

8 'xg.1': 'xg_away'

9 })

10

https://appfootballprediction-rpjynmuma2una2i2vsnrjr.streamlit.app/
https://fbref.com/en/

Final dataset shape: (380, 11) → matches expected for a full PL season.

Feature Engineering

To capture team form, we created rolling averages of recent performance:

simirlar function was used for xG

Correlation analysis

A heatmap of correlations between engineered features and target variables (home_goals , away_goals) revealed:

11

12 game_data = game_data.drop(columns=['venue','matchreport','notes'])

13

14 game_data

1 def compute_team_rolling_stats(df, team_col, goals_for_col, goals_against_col, prefix):

2 team_stats = []

3

4 for team in df[team_col].unique():

5 team_matches = df[(df[team_col] == team)].copy()

6 team_matches = team_matches.sort_values('date')

7

8 team_matches[f'{prefix}_avg_goals_scored_last_5'] = team_matches[goals_for_col].shift().rolling(5,

min_periods=1).mean()

9 team_matches[f'{prefix}_avg_goals_conceded_last_5'] =

team_matches[goals_against_col].shift().rolling(5, min_periods=1).mean()

10

11 team_stats.append(team_matches[[f'{prefix}_avg_goals_scored_last_5',

f'{prefix}_avg_goals_conceded_last_5']])

12

13 return pd.concat(team_stats).sort_index()

Most Predictive Features (Good Correlation with Goals)

Correlated with home_goals :

Correlated with away_goals :

Less Important Features (Low or No Correlation)

home_avg_goals_scored_last_5 0.24

home_avg_xg_scored_last_5 0.23

home_avg_xg_conceded_last_5 -0.21 (inverse relation)

Feature Correlation

home_avg_xg_conceded_last_5 0.25

away_avg_xg_scored_last_5 0.16

away_avg_goals_scored_last_5 0.12

Feature Correlation

Feature Correlation with home_goals Correlation with away_goals

These were retained but weighted as weaker predictors.

Model Training (TensorFlow)

Input Preparation

Categorical features (home , away) were one-hot encoded.

Numerical features + encoded teams used as model input (X_train).

Targets: home_goals , away_goals .

Input (X_train): Combines your numerical features with one-hot encoded home and away teams.

Target (y_train): The real number of home and away goals (used as regression targets).

Model architecture

3 hidden layers: 90 → 48 → 30 units

Each layer uses:

ReLU activation

BatchNormalization (improves stability)

Dropout (prevents overfitting)

Final output layer has 2 nodes to predict home and away goals

match_week -0.01 -0.03

match_month 0.01 0.14

is_weekend_match 0.04 0.12

match_dayofweek 0.06 0.12

1 home_enc = pd.get_dummies(features_train['home'], prefix='home')

2 away_enc = pd.get_dummies(features_train['away'], prefix='away')

3 X_train = pd.concat([features_train[feature_cols].fillna(0), home_enc, away_enc], axis=1)

4 y_train = features_train[['home_goals', 'away_goals']].astype(float)

1 model = models.Sequential([

2 layers.Dense(90, activation='relu', input_shape=(X_train.shape[1],)),

3 layers.BatchNormalization(),

4 layers.Dropout(0.2),

5 layers.Dense(48, activation='relu'),

6 layers.BatchNormalization(),

7 layers.Dropout(0.2),

8 layers.Dense(30, activation='relu'),

9 layers.BatchNormalization(),

10 layers.Dropout(0.2),

11 layers.Dense(2)

12])

13 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss='mse', metrics=

['mae'])

14 history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2,

verbose=int(verbose))

Model Compilation & Training

Loss function: Mean Squared Error (MSE) - standard for regression

Metric: Mean Absolute Error (MAE) - helps track training progress

Trained for 120 epochs with batch size 128

20% of data used for validation during training

Multiple Runs for Stability

The model was trained multiple times (n_runs = 10 , 50 , 100 , 500) and results were averaged to:

Reduce randomness from model initialization and dropout

Provide a stable and fair estimate of match outcomes and final table

Model Accuracy

To ensure robustness, the model was trained multiple times and the predictions were averaged. This helps reduce the effect of

randomness from model initialization and dropout layers.

The plot of training vs validation loss over 120 epochs gives a clear picture of how well the model learned:

Early Epochs (0–20):

Validation loss drops rapidly → The model is quickly learning meaningful patterns.

Training loss decreases steadily → Learning is effective.

Middle Epochs (20–60):

Both losses continue to decline smoothly.

No sign of overfitting - validation performance keeps improving.

1 model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss='mse', metrics=

['mae'])

2 history = model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2,

verbose=int(verbose))

Later Epochs (60–120):

Loss curves flatten out, indicating convergence.

No sharp divergence between training and validation → Model generalizes well.

Summary of Learning Behavior

Good convergence: Model effectively learns from training data.

No overfitting: Validation loss remains low and stable.

Final MSE is very low, suggesting that the model is accurately predicting goal outcomes on average.

Prediction Performance

The final predictions were evaluated against actual match outcomes:

Key Observations

The model does well at predicting match results (win/draw/loss), with an outcome accuracy over 56%.

Away goals were predicted more accurately than home goals.

Predicting the exact number of goals is inherently difficult due to football s̓ unpredictability - but the model still provides

reliable estimations.

Example Findings

Example Predictions

The model often predicts the outcome correctly, even when the exact scoreline varies.

This consistency in outcome prediction makes it well-suited for league table forecasting.

Match Outcome (W/D/L) 56.25%

Exact Home Goals Predicted 36.96%

Exact Away Goals Predicted 43.24%

Metric Accuracy

Arsenal

(Home) vs

Tottenham

(Away)

2 - 1 (2.09 - 1.03) Home Win 2 - 1 Home Win Accurate

Arsenal

(Home) vs

Man City

(Away)

2 - 1 (2.25 - 1.18) Home Win 5 - 1 Home Win Partial Miss

Match Predicted Score Predicted

Outcome

Actual Score Actual

Outcome

Result Type

